garnier |
Secondary structure prediction is notoriously difficult to do accurately. The GOR I alogorithm is one of the first semi-successful methods.
The Garnier method is not regarded as the most accurate prediction, but is simple to calculate on most workstations.
The accuracy of any secondary structure prediction program is not much better than 70% to 80% at best. This is an early algorithm and will probably not predict with much better than about 65% accuracy.
The Web servers for PHD, DSC, and others are generally preferred.
Do not rely on this (or any other) program alone to make your predictions with. Use several programs and take a consensus of the results.
% garnier Predicts protein secondary structure Input protein sequence(s): tsw:amic_pseae Output report [amic_pseae.garnier]: |
Go to the input files for this example
Go to the output files for this example
Standard (Mandatory) qualifiers: [-sequence] seqall Protein sequence(s) filename and optional format, or reference (input USA) [-outfile] report [*.garnier] Output report file name Additional (Optional) qualifiers: (none) Advanced (Unprompted) qualifiers: -idc integer [0] In their paper, GOR mention that if you know something about the secondary structure content of the protein you are analyzing, you can do better in prediction. 'idc' is an index into a set of arrays, dharr[] and dsarr[], which provide 'decision constants' (dch, dcs), which are offsets that are applied to the weights for the helix and sheet (extend) terms. So, idc=0 says don't use the decision constant offsets, and idc=1 to 6 indicates that various combinations of dch,dcs offsets should be used. (Integer from 0 to 6) Associated qualifiers: "-sequence" associated qualifiers -sbegin1 integer Start of each sequence to be used -send1 integer End of each sequence to be used -sreverse1 boolean Reverse (if DNA) -sask1 boolean Ask for begin/end/reverse -snucleotide1 boolean Sequence is nucleotide -sprotein1 boolean Sequence is protein -slower1 boolean Make lower case -supper1 boolean Make upper case -sformat1 string Input sequence format -sdbname1 string Database name -sid1 string Entryname -ufo1 string UFO features -fformat1 string Features format -fopenfile1 string Features file name "-outfile" associated qualifiers -rformat2 string Report format -rname2 string Base file name -rextension2 string File name extension -rdirectory2 string Output directory -raccshow2 boolean Show accession number in the report -rdesshow2 boolean Show description in the report -rscoreshow2 boolean Show the score in the report -rusashow2 boolean Show the full USA in the report -rmaxall2 integer Maximum total hits to report -rmaxseq2 integer Maximum hits to report for one sequence General qualifiers: -auto boolean Turn off prompts -stdout boolean Write standard output -filter boolean Read standard input, write standard output -options boolean Prompt for standard and additional values -debug boolean Write debug output to program.dbg -verbose boolean Report some/full command line options -help boolean Report command line options. More information on associated and general qualifiers can be found with -help -verbose -warning boolean Report warnings -error boolean Report errors -fatal boolean Report fatal errors -die boolean Report dying program messages |
Standard (Mandatory) qualifiers | Allowed values | Default | |
---|---|---|---|
[-sequence] (Parameter 1) |
Protein sequence(s) filename and optional format, or reference (input USA) | Readable sequence(s) | Required |
[-outfile] (Parameter 2) |
Output report file name | Report output file | <*>.garnier |
Additional (Optional) qualifiers | Allowed values | Default | |
(none) | |||
Advanced (Unprompted) qualifiers | Allowed values | Default | |
-idc | In their paper, GOR mention that if you know something about the secondary structure content of the protein you are analyzing, you can do better in prediction. 'idc' is an index into a set of arrays, dharr[] and dsarr[], which provide 'decision constants' (dch, dcs), which are offsets that are applied to the weights for the helix and sheet (extend) terms. So, idc=0 says don't use the decision constant offsets, and idc=1 to 6 indicates that various combinations of dch,dcs offsets should be used. | Integer from 0 to 6 | 0 |
The meaning and use of the parameter 'idc' is currently being investigated. The original author, Bill Pearson writes:
"In their paper, GOR mention that if you know something about the secondary structure content of the protein you are analyzing, you can do better in prediction. "idc" is an index into a set of arrays, dharr[] and dsarr[], which provide "decision constants" (dch, dcs), which are offsets that are applied to the weights for the helix and sheet (extend) terms. So, idc=0 says don't use the decision constant offsets, and idc=1 to 6 indicates that various combinations of dch,dcs offsets should be used. I don't remember what they are, but I must have gotten the values from their paper."
ID AMIC_PSEAE Reviewed; 385 AA. AC P27017; DT 01-AUG-1992, integrated into UniProtKB/Swiss-Prot. DT 23-JAN-2007, sequence version 5. DT 20-MAR-2007, entry version 50. DE Aliphatic amidase expression-regulating protein. GN Name=amiC; OrderedLocusNames=PA3364; OS Pseudomonas aeruginosa. OC Bacteria; Proteobacteria; Gammaproteobacteria; Pseudomonadales; OC Pseudomonadaceae; Pseudomonas. OX NCBI_TaxID=287; RN [1] RP NUCLEOTIDE SEQUENCE [GENOMIC DNA], AND PROTEIN SEQUENCE OF 2-19. RC STRAIN=PAC; RX MEDLINE=91317707; PubMed=1907262; RA Wilson S.A., Drew R.E.; RT "Cloning and DNA sequence of amiC, a new gene regulating expression of RT the Pseudomonas aeruginosa aliphatic amidase, and purification of the RT amiC product."; RL J. Bacteriol. 173:4914-4921(1991). RN [2] RP NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA]. RC STRAIN=ATCC 15692 / PAO1 / 1C / PRS 101 / LMG 12228; RX MEDLINE=20437337; PubMed=10984043; DOI=10.1038/35023079; RA Stover C.K., Pham X.-Q.T., Erwin A.L., Mizoguchi S.D., Warrener P., RA Hickey M.J., Brinkman F.S.L., Hufnagle W.O., Kowalik D.J., Lagrou M., RA Garber R.L., Goltry L., Tolentino E., Westbrock-Wadman S., Yuan Y., RA Brody L.L., Coulter S.N., Folger K.R., Kas A., Larbig K., Lim R.M., RA Smith K.A., Spencer D.H., Wong G.K.-S., Wu Z., Paulsen I.T., RA Reizer J., Saier M.H. Jr., Hancock R.E.W., Lory S., Olson M.V.; RT "Complete genome sequence of Pseudomonas aeruginosa PAO1, an RT opportunistic pathogen."; RL Nature 406:959-964(2000). RN [3] RP CRYSTALLIZATION. RX MEDLINE=92106343; PubMed=1762155; DOI=10.1016/0022-2836(91)90579-U; RA Wilson S.A., Chayen N.E., Hemmings A.M., Drew R.E., Pearl L.H.; RT "Crystallization of and preliminary X-ray data for the negative RT regulator (AmiC) of the amidase operon of Pseudomonas aeruginosa."; RL J. Mol. Biol. 222:869-871(1991). RN [4] RP X-RAY CRYSTALLOGRAPHY (2.1 ANGSTROMS), AND SEQUENCE REVISION TO 27-28. RX MEDLINE=95112789; PubMed=7813419; RA Pearl L.H., O'Hara B.P., Drew R.E., Wilson S.A.; RT "Crystal structure of AmiC: the controller of transcription RT antitermination in the amidase operon of Pseudomonas aeruginosa."; RL EMBO J. 13:5810-5817(1994). RN [5] RP X-RAY CRYSTALLOGRAPHY (2.25 ANGSTROMS) OF COMPLEX WITH AMIR. RC STRAIN=PAC1; [Part of this file has been deleted for brevity] FT /FTId=PRO_0000064581. FT VARIANT 106 106 T -> N (in strain: PAC181; butyramide FT inducible phenotype). FT CONFLICT 27 28 QR -> HA (in Ref. 1). FT CONFLICT 186 186 V -> L (in Ref. 1). FT CONFLICT 263 263 A -> P (in Ref. 1). FT CONFLICT 305 305 S -> N (in Ref. 1). FT CONFLICT 319 319 C -> D (in Ref. 1). FT CONFLICT 383 383 A -> P (in Ref. 1). FT STRAND 8 12 FT STRAND 15 17 FT HELIX 20 38 FT TURN 39 42 FT STRAND 49 53 FT HELIX 59 71 FT STRAND 77 80 FT HELIX 84 96 FT STRAND 100 103 FT STRAND 116 118 FT HELIX 123 125 FT HELIX 127 135 FT TURN 136 138 FT STRAND 140 149 FT HELIX 150 165 FT STRAND 169 176 FT HELIX 182 195 FT STRAND 198 203 FT HELIX 208 220 FT STRAND 228 232 FT HELIX 235 238 FT HELIX 243 246 FT STRAND 250 254 FT HELIX 262 272 FT HELIX 283 302 FT HELIX 307 314 FT STRAND 319 321 FT STRAND 324 328 FT TURN 330 332 FT STRAND 335 337 FT STRAND 340 344 FT STRAND 350 355 FT HELIX 368 370 SQ SEQUENCE 385 AA; 42807 MW; 33924B6C36017B79 CRC64; MGSHQERPLI GLLFSETGVT ADIERSQRYG ALLAVEQLNR EGGVGGRPIE TLSQDPGGDP DRYRLCAEDF IRNRGVRFLV GCYMSHTRKA VMPVVERADA LLCYPTPYEG FEYSPNIVYG GPAPNQNSAP LAAYLIRHYG ERVVFIGSDY IYPRESNHVM RHLYRQHGGT VLEEIYIPLY PSDDDVQRAV ERIYQARADV VFSTVVGTGT AELYRAIARR YGDGRRPPIA SLTTSEAEVA KMESDVAEGQ VVVAPYFSSI DTAASRAFVQ ACHGFFPENA TITAWAEAAY WQTLLLGRAA QAAGSWRVED VQRHLYDICI DAPQGPVRVE RQNNHSRLSS RIAEIDARGV FQVRWQSPEP IRPDPYVVVH NLDDWSASMG GGALP // |
The output is a standard EMBOSS report file.
The results can be output in one of several styles by using the command-line qualifier -rformat xxx, where 'xxx' is replaced by the name of the required format. The available format names are: embl, genbank, gff, pir, swiss, trace, listfile, dbmotif, diffseq, excel, feattable, motif, regions, seqtable, simple, srs, table, tagseq
See: http://emboss.sf.net/docs/themes/ReportFormats.html for further information on report formats.
By default garnier writes a 'tagseq' report file.
######################################## # Program: garnier # Rundate: Sun 15 Jul 2007 12:00:00 # Commandline: garnier # -sequence tsw:amic_pseae # Report_format: tagseq # Report_file: amic_pseae.garnier ######################################## #======================================= # # Sequence: AMIC_PSEAE from: 1 to: 385 # HitCount: 113 # # DCH = 0, DCS = 0 # # Please cite: # Garnier, Osguthorpe and Robson (1978) J. Mol. Biol. 120:97-120 # # #======================================= . 10 . 20 . 30 . 40 . 50 MGSHQERPLIGLLFSETGVTADIERSQRYGALLAVEQLNREGGVGGRPIE helix HHHHH HHHHH sheet EE EEEEE EE EEE turns T TTTT TTTT coil CCCCCC CCCCCC CC C CCCC . 60 . 70 . 80 . 90 . 100 TLSQDPGGDPDRYRLCAEDFIRNRGVRFLVGCYMSHTRKAVMPVVERADA helix HHHHHH HHHH H HHHHHH sheet EE EEEE EEEE EEEE turns TT TT T TTTTT TTT T T coil C CCC . 110 . 120 . 130 . 140 . 150 LLCYPTPYEGFEYSPNIVYGGPAPNQNSAPLAAYLIRHYGERVVFIGSDY helix HHH sheet EEEE E EE E EEEE EEEEE turns T TTT TT T TT TT T TTTT coil CCC CC CCCCC CCC C . 160 . 170 . 180 . 190 . 200 IYPRESNHVMRHLYRQHGGTVLEEIYIPLYPSDDDVQRAVERIYQARADV helix HHHH HHHHHHHHHHHHH sheet EEE EEEEEEE EEE turns TTT TTT TTTT coil CCC C CCCC CC . 210 . 220 . 230 . 240 . 250 VFSTVVGTGTAELYRAIARRYGDGRRPPIASLTTSEAEVAKMESDVAEGQ helix HHHHHHH HHHHHHHHHHHHHHHHH sheet EEEEE EE EEE turns TTTTTT coil CCCCC CCC CC . 260 . 270 . 280 . 290 . 300 VVVAPYFSSIDTAASRAFVQACHGFFPENATITAWAEAAYWQTLLLGRAA helix HHHHHHH HHHHHHHHHHHHH HHH sheet EEEEE EEE EE E turns TT TTT TT coil CC CCC C CCC . 310 . 320 . 330 . 340 . 350 QAAGSWRVEDVQRHLYDICIDAPQGPVRVERQNNHSRLSSRIAEIDARGV helix HH HHHH HHH sheet EEEE EEEEE EEE E turns TTTTTT T TT T TTT coil CCCCC C CCC CCC CCC . 360 . 370 . 380 FQVRWQSPEPIRPDPYVVVHNLDDWSASMGGGALP helix sheet EEE EEEEEEE E E turns TT TT TTT TTT coil CCCC CCC C C C CCC #--------------------------------------- # # Residue totals: H:103 E:102 T: 86 C: 94 # percent: H: 27.9 E: 27.6 T: 23.3 C: 25.5 # #--------------------------------------- #--------------------------------------- # Total_sequences: 1 # Total_hitcount: 113 #--------------------------------------- |
The Web servers for PHD, DSC, and others are generally preferred.
Do not rely on this (or any other) program alone to make your predictions with. Use several programs and take a consensus of the results.
The 3D structure for the example sequence is known, although the 2D structure elements were not in the SwissProt feature table for release 38 when the test data was extracted.
DSSP shows:
From To Structure 9 13 E beta sheet 21 39 H alpha helix 50 54 E beta sheet 60 72 H alpha helix 78 81 E beta sheet 85 97 H alpha helix 101 104 E beta sheet 117 119 E beta sheet 128 136 H alpha helix 142 148 E beta sheet 151 166 H alpha helix 170 177 E beta sheet 183 196 H alpha helix 200 204 E beta sheet 208 221 H alpha helix 229 231 E beta sheet 236 239 H alpha helix 244 247 H alpha helix 251 254 E beta sheet 263 273 H alpha helix 284 303 H alpha helix 308 315 H alpha helix 320 322 E beta sheet 325 329 E beta sheet 336 337 E beta sheet 341 345 E beta sheet 351 356 E beta sheet
You are advised to use several of the latest Web-based prediction sites and combine them to make a consensus prediction.
Program name | Description |
---|---|
helixturnhelix | Report nucleic acid binding motifs |
hmoment | Hydrophobic moment calculation |
pepcoil | Predicts coiled coil regions |
pepnet | Displays proteins as a helical net |
pepwheel | Shows protein sequences as helices |
tmap | Displays membrane spanning regions |
This application was modified for inclusion in EMBOSS by
Rodrigo Lopez (rls © ebi.ac.uk)
European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK